دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 619 کیلو بایت |
تعداد صفحات فایل | 38 |
هندسه 2
فصل اول:
1) اصولی از خط راست:
الف) یک خط شامل مجموعه ای از نقاط است که می توان گفت هر خط شامل حداقل دو نقطة متمایز است.
ب) دو خط راست متمایز حداکثر یکدیگر را در یک نقطه قطع می کنند.
ج) هر دو نقطه متمایز حداقل بر یک خط قرار دارند.
د) بین هر دو نقطه متمایز از یک خط راست می توان نقطه ای متمایز از آن دو بدست آورد.
2) اصولی از صفحه:
الف) صفحه مجموعه ای است از نقاط و هر صفحه حداقل شامل 3 نقطه است که بر یک استقامت نمی باشند.
ب) بر هر سه نقطه غیرواقع بر یک خط راست یک صفحه می گذرد.
ج) اگر هر دو نقطه از خطی، در یک صفحه باشند تمام نقاط این خط نیز در این صفحه است.
3) فضا: مجموعه ای نامتناهی شامل کلیه نقاط است.
4) تعریف: تعریف یعنی شناساندن یک چیز یا یک شیء بوسیله مشخصات لازم برای شناساندن. تعریف باید جامع و مانع باشد.
5) تعریف نشده ها: آنچه را که با درک و تصورکردن و یا از طریق مشاهده شناخته و بدون تعریف می پذیریم.
6) برهان: رسیدن از یک سلسله گزاره های درست قبلی به گزاره هایی که درستی آن را بر مبنای آنچه قبلاً پذیرفته ایم قبول می کنیم.
7) قضیه: هر گزاره ای که درستی آن نیازمند برهان است.
8) اصل: هر گزاره ای که درستی آن نیاز به برهان ندارد.
9) شکل: هر مجموعه ای از نقاط را یک شکل نامند.
10) نیم خط:مجموعه ای از نقاط یک خط را که از یک طرف محدود و از یک طرف نامحدود باشد.
با n نقطه متمایز در یک راستا n2 نیم خط داریم
11) پاره خط: جزئی از یک خط راست که از دو طرف محدود باشد. مانند پاره خطAB
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 137 کیلو بایت |
تعداد صفحات فایل | 18 |
هندسه بردارها
بردارها:
بردار: دارای بزرگی و جهت است، بردارها از قاعده ترکیب (برداری) خاصی پیروی می کنند.
لیست برداری: کمیتی است که هم بزرگی و هم جهت دارد و بدین سبب می توان آن را با یک بردار نمایش داد.
برخی کمیتهای فیزیکی، از جمله جابجایی، سرعت و شتاب کمیتهای برداری دارند.
همه کمیتهای فیزیکی جهت ندارند، مثلاً دما، انرژی، جرم و زمان جهت خاصی را در فضا نشان نمی دهند این نوع کمیتها را نرده ای گویند و محاسبه های مربوط به آن با قاعده های جبری عادی انجام می شود.
ساده ترین کمیت برداری، جابجایی یا تغییر مکان است. برداری که جابجایی را نشان می دهد، بردار جابجایی نامیده می شود.
جمع کردن بردارها به روش هندسی :
شکل1-1 روش هندسی مربوط به جمع کردن بردارهای دو بعدی a و b را نشان می دهد.
جمع برداری که به این صورت تعریف می شود دو خاصیت مهم دارد.
نخست ترتیب جمع کردن بردارها اهمیتی ندارد. جمع کردن a و b همان نتیجه جمع کردن b با a را بدست می دهد.
یعنی (قانون جابجایی) a+b=b+a
دوم، هر گاه بیش از دو بردار داشته باشیم، برای جمع کردن می توانیم آنها را به هر ترتیبی که بخواهیم گروه بندی کنیم اگر بخواهیم بردارهای aوbوc را جمع می کنیم می توانیم نخست aوb را جمع کنیم و سپس مجموع این دو را با c بدست آوریم . همچنین می توانیم نخست bوc را جمع و سپس آن مجموع را با a جمع کنیم نتیجه ای را که به دست می آوریم برای هر دو یکسان است یعنی:
( قانون شرکت پذیری)
برادار b برداری است که همان بزرگی بردار b را دارد اما جهتش مخالف است . با جمع کردن این دو بردار داریم:
بنابراین جمع کردن –b همان اثر تفریق کردن b را دارد . از این خاصیت برای تعرةیف تفاضل دو بردار استفاده می کنیم .
فرض می کنیم: پس (تفریق برداری)
یعنی برای تعیین بردار تفاضل ، بردار را با بردار جمع می کنیم.
مؤلفه های بردارها :
مؤلفه ی یک بردار تصویر یک بردار بر روی یک محور است.
مولفه های یک بردار برای به دست آوردن مولفه های (نرده ای) هر بردار و معدن ، در راستای محورهای مختصات، از انتهای بردار خط هایی بر محور های مختصات عمود می کنیم.
مؤلفه های بردار عبارت انداز :
که در آن زاویه میان محور x مثبت و بردار a است. علامت جبری یک نقطه جهت آن رادار روی محور مربوط نشان می دهد. با در دست داشتن مؤلفه های بردار ، می توان بزرگی سمتگیری آن را معین کرد:
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 13 |
تحقیق در مورد هندسه
مقدمه
هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.
مفهوم اصل،قضیه ودیدگاه اقلیدس:
«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.
اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.
«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.
برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»
به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.
• معمای اصل پنجم اقلیدس
در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.
ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه این شد که اصل موضوع دیگری را به جای اصل موضوع اقلیدس قرا دادند. خیام در کتاب خود که به این موضوع اختصاص دارد، چهارضلعی های دو قائمه متساوی الساقین را مطرح می کند. او از چهارضلعی هایی صحبت می کند که دو ضلع رو به رو با هم برابر وبر قاعده عمود باشند.بعد ابتدا ثابت می کند، دو زاویه دیگر این چهارضلعی باهم برابرند وبا جانشین کردن اصل دیگری به جای پوستولای پنجم اقلیدس،حاده یامنفرجه بدون دو زاویه دیگر را رد می کند. طرح خیام به وسیله نصیرطوسی به کشورهای اروپایی می رود. از جمله ساکری ریاضیدان ایتالیایی، با طرح همان چهارضلعی ها تلاش می کند اصل موضوع اقلیدس را ثابت کند؛ ولی به نتیجه ای نمی رسد.
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 70 کیلو بایت |
تعداد صفحات فایل | 15 |
طول کمان، مساحت و تابع Arcsine
-مجله ریاضیات ، مارس 1983، جلد 56، شماره 2 صفحات 110-106
-توصیف هندسی مقاله ها جبری یک محرک اصلی برای حساب دیفرانسیل وانتگرال مقدماتی ایجادمی کند.
عناوین حساب دیفرانسیل وانتگرال بوسیله هندسه تحلیلی در بسیاری از متن های مقدمه وابستگی به شروع های عکس دار در گسترش انتگرال معین و مشقق اشاره می کند.
در حالی که فاکتورهای هندسی ، بسیاری از نمادهای توابع مثلثاتی ومشتق های آنها را کنترل کننده یک راه حل تقریبا جامع برای روشهای جبری را معرفی و مطالعه توابع مثلثاتی معکوس وجود دارد این نتکه نشان می دهد چطور مفاهیم جبری در تعاریف انتگرال معین، مثلثاتی ومشتق های آنها در بحث تطابق توابع معکوس ممکن است ادامه پیدا کند. مرجع در رابطه با این مفاهیم جبری نسبت به توسعه نظریه بیضی و روش الوار(Eluer) در کشف قضیه های ضمیمه جبری را سینوسهای دایره ای هدلولی و lemniscare ایجاد خواهد شد.
حساب دیفرانسیل وانتگرال نمونه در مقابل arcsine بعنوان طول کمان با در نظر گرفتن ]1[ و ] 3[ بعنوان نمونه هایمان، یادآوری می کنیم که در کتاب جدید درسی استاندارد، بعد از آنکه انتگرال معین تعریف شده است . کاربردهایی شامل مساحت بین دو منحنی وفرمول طول کمان می شود از آنجائیکه تکنیک های انتگرال گیری کمی در دسترس می باشد. مشکلات طول کمان به کمان های باریک y=f(x) تا حدی که انتگرال بطور خاصی ساده باشد وگاهگاهی توجیه یک نویسنده برای نبود کاربردهای مناسب پیشنهادی شود.(ببنید ]3[ صفحه 429)
بعد از مقوله توابع مثلثاتی مروری از اندازه گیری رادیان بطوریکه طول کمان از نقطه (0و1) روی دایره واحد اندازه گیری می شود. Cosine , sine یک عدد حقیقی بعنوان مختصات sineو cos یک عدد حقیقی بعنوان مختصات نقطه (x,y) روی دایره واحد رادیان های از (0و1) (شکل 1 را ببنید) سپس خصوصیات sine و cos از تشابهات دایره و دیگر توابع مثلثاتی که در اصطلاح های cosin ,sine تعریف می شود ناشی می شود. مشتق های cosine ,sine بعنوان نتایج 1(sin )/ = ایجادمی شود. این حد از طریق برابر گرفتن طول کمان در امتداد لبه دایره واحد با مساحت بخشی که بوسیله کمان ( در شکل 2و 2= مساحت Aos) وسپس قراردادن این مساحت مابین دو ناحیه مثلث شکل برقرار می گردد.
بعد از مطالعه حساب دیفرانسیل وانتگرال توابع مثلثاتی (f(x)) مطابق توابع معکوس ( از طریق معکوس گرافهای که می شود
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 8 کیلو بایت |
تعداد صفحات فایل | 9 |
مشاهیر ریاضی
فهرست:
سخنی درباره عمرخیام
سخنی درباره خواجه نصیرالدین طوسی
گذری بر زندگی ابوالوفای بوزجانی
گذری برزندگی ابوریحان بیرونی
گذری برزندگی اوریست گالوا
سخنی درباره ابوالحسن عبدالرحمان صوفی رازی
سخنی درباره فیثاغورس
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 27 کیلو بایت |
تعداد صفحات فایل | 29 |
نشانه های یک نقطه عطف در تاریخ ریاضی و وظایف ما
سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم. این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد که تا مدتها جرأت بیان صریح آن را حتی برای خودم نداشتم، چرا که با مسیری که خود در آن قدم گذاشته ام، تناقص داشت. این فکر همواره مرا آزار داده است. تصمیم گرفته بودم که روی این فکر کار جدی انجام داده و آن را در کنفرانس ریاضی در اهواز مطرح کنم ولی میسر نشد. بنابراین بنا را بر این گذاشتم که در تابستان امسال روی این مطلب مطالعات جدی انجام دهم و ثمره آن را در سی و ششمسن کنفرانس ریاضی در یزد مطرح کنم. چون کار اصلی را به تعطیلات تابستان موکول کرده بودم، مقدور نبود که خلاصه مقاله و خود مقاله را به موقع به کنفرانس ارسال کنم. بعلاوه عنوان اولیه مقاله (شرایط کنونی و وظایف انجمن ریاضی ایران) موجب سوء تعبیر نماینده انجمن شد و نظرشان این بود که مطلب بایستی در میزگرد مطرح شود تا بتوان به آن پاسخ داد، در حالی که مقاله عمدتاً در جهت تقویت انجمن است، مضافا این که میزگرد جای ارائه مقاله نیست. به هر حال این تصمیم مرا آزرده خاطر کرد و به دلیل تردید در انجام کار، مطالعاتم دچار اختلال شد. اما در هر صورت تصمیم گرفتم که این ایده را هر چند به صورت ناقص و فشرده و به شکل آزاد، در کنفرانس ارائه کنم.
حقیقتی آشکار است که هر پدیده ای، تاریخی دارد و برای این که تصمیمی برای حال و آینده آن پدیده بگیریم بایستی تاریخ گذشته اش را بدانیم. اگر بخواهیم به زبان ریاضی تشبیه کنیم، مسیر حرکت یک پدیده مثل یک منحنی همواری است که جهت حرکت آن در هر لحظه، به مسیری که تا آن لحظه طی گرده است بستگی دارد و اگر منحنی را یک منحنی هدفدار تصور کنیم (که در مسائل اجتماعی این چنین است) مسیر گذشته و هدف نهایی جهت گیری بعدی را مشخص خواهد کرد. اگر با توجه به مسیر گذشته جهت منحنی در راستای هدف نباشد، آن نقطه، نقطه عطف خواهد بود. در بخش اول این نوشتار قصد این است که نشان دهیم در یک نقطه عطف از تاریخ ریاضیات ایستاده ایم.
این ادعا که «ما در یک نقطه عطف از تاریخ ریاضیات قرار داریم»، یک ادعای جسارت آمیزی است و نیاز به مطالعه وسیع درباره تاریخ ریاضیات و وضعیت ریاضی در دنیای امروز بویژه اروپا که محور تحولات در این رمینه است، دارد. قسمت اول ،یعنی تاریخ ریاضیات، با توجه به منابع قابل قبول تا حدی انجام شدنی است، اما قسمت دوم احتیاج به زمان بیشتری دارد و از این جهت کار خود را ناقص می دانم.
نگاهی گذرا به تاریخ ریاضی: مطمئنا تاریخ ریاضی همزمان با تاریخ اندیشه انسانی است. لذا نمی توان تاریخ دقیقی برای آغاز آن متصور شد. اسناد تاریخی نشان می دهند که شرق از قبیل چین, هند, ایران, بابل و مصر به تبع تمدنهای اولیه در آن، پیشتر از غرب صاحب علوم و از جمله ریاضیات نسبتا پیشرفته ای بودند. مقدمه «پاپیروس رایند» (1650 ق م ) که یکی از قدیمترین اسناد تاریخ ریاضی است، با توجه به کندی تحولات در عهد باستان، نشان می دهد که در اوائل هزاره دوم قبل از میلاد تمدنهای شرق دارای ریاضیاتی پیشرفته بوده اند. در این سند چنین آمده است :
«به جرئت می توان گفت که بارزترین مشخصه شعور انسان که نشان دهنده درجه تمدن هر ملت است همان قدرت استدلال کردن است، و به طور کلی این قدرت به بهترین وجهی می تواند در مهارت های ریاضی افراد آن ملت به نمایش گذاشته شود»
این سند همچنین نشان می دهد که برخلاف نظر برخی تاریخ نویسان، ریاضیات قبل از تمدن یونان باستان عمدتاً تجربی و شهودی نبوده، و به نحو قابل قبولی با استدلال همراه بوده است.
در اثر ارتباطاتی که یونیان با امپراطوری ایران، بابل و مصر داشتند و به ویژه پس از کشورگشاییهای اسکندر، یونانیان تقریبا بر همه علوم زمان خود احاطه پیدا کردند و تقریبا در همه زمینه ها و از جمله ریاضیات آثاری مدون را بوجود آوردند که تا قرنها بر جهان اندیشه حکومت می کردند. به نظر می رسد که تمایل به منطق و استدلال در قرون قبل از میلاد در یونان به اوج خود رسید. به روایت تاریخ نویسان ریاضی، اولین تلاش خوب برای استدلال مسایل ریاضی توسط تالس در سده ششم قبل از میلاد و پس از آن توسط شاگردش فیثاغورس و بعد از آن در قرون سوم ق.م. توسط اقلیدس در کتاب اصول اقلیدس به صورت مدون درآمد. کتاب اصول اقلیدس گرچه شامل مقالاتی در باره اعداد است اما بیشتر مسایل مربوط به اعداد از زاویه هندسی مورد توجه قرار گرفته اند. مشابه کار اقلیدس را «نیکوماخوس» (اواخر قرن اول بعد از میلاد) در زمینه حساب انجام داد.
رسالات منطق «ارسطو» (قرن چهارم ق.م) که بعدها به «ارغنون» مشهور شد، و اثری است ریاضی- فلسفی، نیز از جمله آثاری است که بیش از هزار سال بر جهان اندیشه، از جمله ریاضی، تاثیرات عمیق گذاشت. کارهای «ارشمیدس» (سده سوم قبل از میلاد، برخی او را یکی از بزرگترین ریاضیدانان همه اعصار نامیده اند ) همواره الهام بخش ریاضیات کاربردی بوده است و تا قرن نوزدهم نفوذ عمیقی در ریاضیدانان به ویژه در زمینه آنالیز داشته است .
طی قرون بعد از میلاد به دلیل جنگ های داخلی، تسلط امپراطوری روم بر یونان، سوزاندن کتابخانه ها از جمله کتابخانه بزرگ اسکندریه و مهمتر از همه افتادن علوم در زندان خرافی کلیسا، به تدریج و به خصوص پس از تسلط اسلام بر تمدنهای بزرگ آن زمان در قرن هفتم، رسالت حفظ و انتشار علوم بر عهده ممالک اسلامی افتاد. به روایت برخی کتابهای تاریخی اولین کسی که به ترجمه آثار یونانی دست زد «ابن مقفع» دانشمند ایرانی قرن دوم هجری ( قرن نهم میلادی ) بود. وی اولین بار فن منطق را به عربی ترجمه کرد و مسلمانان را به این دانش مسلح کرد. پس از آن جریانی شکل گرفت که در تاریخ به نهضت ترجمه معروف است. در این جا نقش یک انجمن پنهانی به اسم «اخوان الصفا» که در قرن چهارم هجری شکل گرفت بسیار بارز است. نتیجه کار این انجمن که متشکل از علماء و دانشمندان اسلامی بود رساله هایی است که مشتمل بر 51 مقاله در زمینه های مختلف علوم طبیعی ، ریاضی، الهی و مسائل عقلی و غیره می باشد. از میان دانشمندانی که تاثیرات زیادی را روی نسل های بعدی در زمینه ریاضی گذاشتند می توان از خوارزمی، ماهانی، ابن قروه، کرجی، بوزجانی، خیام، ابن عزرا، کاشانی و خواجه نصیرالدین طوسی نام برد.
البته در این دوره که به دوره تاریک اندیشی غرب مشهور است و تا حدود سده چهارده میلادی ادامه داشته است، در امپراطوری روم شرقی (بیزانس) که به طور طبیعی بیشتر تحت تاثیر فرهنگ یونانی بود، علوم و از جمله ریاضیات به حرکت خود، به کندی، ادامه داد. در این میان می توان از «بوئتیوس» (ح 510 م) نام برد که معلومات ریاضی دانانی چون «اقلیدس»، «نیکوماخوس» و «ثاون» را در کتابی به نام دو مقاله در باب اصول حساب گرداوری کرد که در همه مدارس قرون وسطی تدریس می شد. برجسته ترین ریاضیدان قرون وسطی در غرب، «فیبوناتچی» (1202 م) بود که تا حدود زیادی تحت تاثیر کتاب «جبر و مقابله» اثر مهم ریاضیدان بزرگ ایرانی (قرن نهم میلادی )، یعنی «خوارزمی»، بوده است.
در کتاب «صورتبندی مدرنیته و پست مدرنیته»، قرون پس از دوره تاریک اندیشی غرب، به چهار دوره به صورت زیر تقسیم شده است:
1- دوره رنسانس یا نوزایی، از قرن چهاردهم؛
2- جنبش اصلاح دینی، در قرن شانزدهم؛
3- عصر روشنگری، از اواخر قرن هفدهم تا اوایل قرن هیجدهم؛
4- انقلاب صنعتی، از نیمه دوم قرن هیجدهم تا نیمه قرن نوزدهم؛
به نظر می رسد این تقسیم بندی در مورد تاریخ تحول ریاضیات در غرب نیز، با مختصر تفاوتی، صدق می کند.
جرقه های دوره نوزایی در ایتالیا زده شد. در این دوره در واقع علوم عهد یونان باستان و تمدن اسلامی ترجمه و بازیافت شد. شاید بتوان گفت این کار در زمینه ریاضیات در قرن سیزدهم با کارهای فبیوناتچی شروع شد. یه این ترتیب، دوره نوزایی در ریاضیات از قرن سیزدهم شروع شده است که با توجه به ماهیت ریاضی تا حدی طبیعی است. این نکته از این جهت تذکر داده شد تا توجه کنیم که تحولات در علوم گرچه به مقدار زیاد به تحولات اجتماعی وابسته است، اما بر آن منطبق نیست و گاه خود می تواند زمینه ساز تحول اجتماعی باشد.
در دوره اول تحول ریاضی در غرب که می توان گفت از قرن سیزدهم میلادی تا نیمه قرن شانزدهم ادامه دارد، اگر چه ریاضیات پیشرفت زیادی کرد اما خلاقیت و نوآوری چندانی در آن صورت نگرفت.
از نیمه دوم قرن شانزدهم تحت تأثیر گشایشی که از طریق اصلاح دینی و اجتماعی ( با پرچمداری مصلحینی چون «مارتین لوتر»، «توماس مونتسر»، «هولدریخ تسوینگلی»، «جان کالون» و دیگران ) در غرب صورت گرفت، شاهد کارهای خلاقانه در ریاضیات هستیم. می توان گفت که این جریان از «نپر» و ابداع لگاریتم شروع شد و با توجه به نیاز آن زمان به کارهای محاسباتی سنگین به شدت مورد اقبال قرار گرفت. سده های هفدهم و هیجدهم شاهد ریاضیدانان بزرگی با کارهای بزرگ در زمینه های مختلف است. «گالیله» و «کپلر» در زمینه مکانیک آسمان، «پاسکال» در زمینه هندسه تصویری و پایه گذاری نظریه احتمال (به همراه ریاضیدان بزرگ فرانسوی، یعنی «فرما» )، «دکارت» در زمینه ابداع هندسه تحلیلی ( ظاهراً «فرما» نیز همزمان با او به هندسه تحلیلی رسیده بود)، «فرما» در زمینه های مختلف ریاضی و به ویژه در زمینه نظریه اعداد و ایجاد زمینه برای پیشرفت جبر و آنالیز و بالاخره «کاوالیری»، «جان والیس» و «باروی» در بسترسازی مناسب برای کارهای اساسی که بعداً در قرن هیجدهم توسط «نیوتن» و «لایب نیتس» صورت گرفت. به این نامها بایستی نام ریاضی دان بزرگ هلندی قرن هفدهم یعنی «کریستین هویگنس» را هم اضافه کنیم که کارهایش باعث پیشرفتهای محسوسی در علم نجوم و احتمالات و اختراعات صنعتی از جمله اختراع ساعت پاندولی شد.
اوایل قرن هیجدهم نقطه عطفی در تاریخ ریاضیات است. در اوایل این قرن نیوتن و لایب نیتس به طور همزمان و با استفاده از کارهای کسانی چون کاوالیری، جان والیس و باروی که پیش از این انجام شده بود، حساب دیفرانسیل و انتگرال را ابداع کردند. در نیمه اول این قرن شاهد ریاضیدانان بزرگ دیگری نظیر برادران برنولی ( سه برادر ریاضیدان که در حل مسایل ریاضی خستگی ناپذیر بودند )، «تیلر»، «مکلورن» و دیگران هستیم.
متعاقب پیشرفتهای ریاضی و به تبع آن سایر علوم مرتبط با ریاضی و با توجه به نیاز زمان، اختراعاتی در زمینه های مختلف شروع شد و نطفه های انقلاب صنعتی در غرب در نیمه دوم قرن هیجدهم شکل گرفت. این انقلاب صنغتی به دنبال خود تغییراتی در دیدگاههای فلسفی و اجتماعی غرب گذاشت. اگر چه به روایت تاریخ، انقلاب صنعتی از انگلیس شروع شده بود ولی در فرانسه با انقلاب اجتماعی همراه شد و توانست تأثیرات شگرفی را در بینش جهان غرب بگذارد. ریاضیدانان این دوره تحت تأثیر همین بینش توانستند تابوهای ریاضی را در همه زمینه ها بشکنند. ابتدا به دنبال ابهاماتی که در طرح «بینهایت کوچکها» از طرف نیوتن و لایب نیتس در بحث حساب دیفرانسیل و انتگرال پیش آمده بود، مباحثات و مجادلات زیادی در این مورد صورت گرفت. در اثر تلاش ریاضیدانانی چون «اویلر»، «دالامبر»، «بولتسانو»، «وایراشتراوس»، «لاگرانژ»، «ریمان» و به خصوص «کوشی» برای اجتناب از این شبهات، از دل هندسه، آنالیز سر برآورد و به اوج خود رسید. از سوی دیگر نیز با تلاش ریاضیدانی چون «واندرموند»، «لاگرانژ»، «گاوس»، «آبل»، «گالوا»، «همیلتن» و دیگران از دل حساب و نظریه اعداد شاخه های مختلف جبر شکل گرفت. در این میان کارهای گاوس، آبل و به ویژه گالوا بسیار بدیع بود و کار همیلتن به جهت معرفی حلقه های تعویض ناپذیر، به دلیل ساختار شکنی، بسیار مؤثر بود.
جریان انقلابی دیگری که در این زمان شکل گرفت، شکستن تابوی هندسه اقلیدسی بود. به نقل از اسناد تاریخی اولین کسی که با طرد اصل پنجم اقلیدس به هندسه نااقلیدسی نزدیک شد «گاوس» ریاضیدان بزرگ آلمانی بود که بهر دلیل آن را انتشار نداد. کمی بعد هندسه نااقلیدسی به صورت مستقل توسط «یوهان بایایی» (1802-1860) ریاضی دان مجاری و «لباچفسکی» (1793- 1856) ریاضی دان روسی اعلام وجود کرد. چندی بعد «ریمان» با جرح و تعدیل دیگری در اصل پنجم اقلیدس، هندسه دیگری را که به هندسه بیضوی موسوم است، معرفی کرد.
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 123 کیلو بایت |
تعداد صفحات فایل | 14 |
ریاضیات بابلی و مصری
شرق باستان
ریاضیات اولیه برای توسعه خود نیازمند یک پایه عملی که چنین پایه ای با پیدا شدن اشکال پیشرفته تر بوجود آمد. در امتداد برخی از رودخانه های بزرگ آسیا و آفریقا مانند نیل در آفریقا و دجله و فرات و یانگ سه و گنگ در نواحی مختلف آسیا اشکال جدیدی بوجود آمد.
در امتداد برخی از رودخانه های بزرگ افریقا و آسیا یعنی نیل در افریقا دجله و فرات در آسیای غربی سند و پس از آان گنگ در آسیای جنوبی میانه و هوانگ هو و پس از آن یانگ تسه در آسیای شرقی بود که اشکال جدید که زمینهای واقع در امتداد این رودخانه ها به نواحی کشاورزی ثروتمندی تبدیل شوند.
با خشک کردن باتلاق و کنترل سیلاب و آبیاری این امکان وجود داشت که زمین هایی که در امتداد اینها قرار گرفته ا ند تبدیل به یک کشاورزی ثروتمند شوند.
ریاضیات اولیه در نواحی معینی از شرق باستان برای خدمت به کشاورزی و مهندسی بوجود آمده باشد یک تقویم قابل استفاده ایجاد دستگاههای اوزان و مقادیر برای استفاده در برداشت محصول ، انبارکردن و تقسیم غذا و غیره ... در تعیین قدمت اکتشافی دو مشکل وجود داشت:
1) در ماهیت ایستاپی ساخت اچتماعی و انزوای طولانی برخی از نواحی و 2) خبر موادی که کشفیات بر روی آنها ثبت می شد.
در قدیم بابلیان کشفیات خود را به روی سفالهای بادوام ثبت می کردند و مصریها بر روی سنگ و پاپیروس که از همه بادوام تر بود. در این میان هندی ها و چینی ها یافته های خود را روی خاشاک و برگ درختان ثبت می کردند که ازدوام بسیار پائینی برخوردار بود حال به مطالعه مطالب کشف شده در بابل و مصر می پردازیم.
بابل:
منابع
باستان شناسانی که در بین النهرین کار می کند از قبل از اواسط قرن نوزدمم تا کنون حدود نیم میلیون لوح سفالی منقوش از زیر خاک در آورده اند. بیشتر از 50 هزار لوح تنها در شهر باستانی نیپور به دست آمده.
مجموعه های کثیری از این لوح ها در موزه های پاریس ، برلین و لندن و نیز در دانشگاههای ییل کلمبیا و پلسیلوانیا موجودند. اندازه این لوحها متفاوت است و بین آنها لوحهایی به شکل مربع به مساحت چند اینچ و نیز لوحهایی به اندازه یک کتاب معمولی به چشم می خورد.
گاهی نوشته روی این لوح ها تنها در یک طرف لوح و یا در هر دو طرف آن است. از این نیم میلیون لوح 300 تای آنها صرفاً ریاضی شناسایی شده اند که شامل جداول و سیاهه های از مسائل ریاضی هستند ما دانش خود را از ریاضیات بابلی مدیون همین لوحها هستیم. تا پیش از سال 1800 قبل از میلاد کوشی برای کشف رمز خط میخی نمی شد در این سال عده ای مسافر اروپایی متوجه کتیبه های منقش در عمل 300 پایی در منطقه بیستون در شمال غربی لیوان کنونی کشف کردند.
معمای کتیبه های سرانجام توسط سرهنری کرسویک رالینسون (1895 – 1810) دیپلمات آشورشناس کشف شد که او کلیدی را که باستان شناس و زبان شناس آلمانی به نام جرج گئورگ فرید ریش ( 1853 – 1775) پیشنهاد کرده بود تکمیل کرد.
با بوجود آمدن توانایی لازم برای خواندن متون میخی لوحهای بابلی بدست آمده معلوم شد که این لوحها ظاهراً به کلیه مراحل و علایق زندگی آن اعصار مربوط است برخی از متون ریاضی موجود مربوط به دوره نهایی سومری در سال 21000 ق م است.
دومین گروه که گروه بزرگی هم است مربوط به سلسله بابلی اول ( یعنی دوره شاه حمورایی) تا حدود سال 1600 ق.م. می باشد .
سومین گروه مربوط به سالهای 6000 ق.م تا 300 ب.م می رسد. که مربوط به دورهای امپراتوری بابلی جدید ( بخت النصر) و دوره های بعدی پارسی و سکوی می باشد چون که تغییر این لوح هنوز در دست اقدام است پس بعید نیست به نتایج چشمگیرتری در آینده برسیم.
ریاضیات بازرگانی و ارضی :
حتی قدیمیترین لوحها نشانی از مهارت در محاسبه در سطح عالی داشته و وجود دستگاه موضعی شصتگانی را طی مدت زمانی طولانی آشکار می کند. متون متعددی از این دوره اولیه به واگذاری و محاسباتیکه بر پایه این معاملات می پردازد در دست است.
این لوحها نشان می دهند که سومریهای باستان با کلیه انواع قراردادها رسید ، سفته ضمانت و رهن مقابله سروکار داشته اند و نیز اسناد شرکتهای بازرگانی و لوحهایی که با دستگاه های اوزان و مقادیر سروکار دارند بدست آمده اند.
در این 300 لوح ریاضی که بدست آمده حدود 200 تای آنها جداول هستند. این لوحهای جدولی شامل جدولهای ضرب، عکسها، مربعات و مکعبات و حتی جدولهای توان نیز هستند. به نظر می رسد که تقویم در بابل به اعصار قدیمیترین مربوط می شود.
هندسه:
هندسه بابلی با پیوند نزدیکی با مسامی عملی دارد. بابلی های 2000 تا 1600 ق.م با قواعد کلی:
1) محاسبه مساحت مستطیل
2) مساحت مثلثهای قائم الزاویه و متساوی الساقین
3) ذوزنقه قائم الزاویه
4) حجم مکعب مستطیل و کلی تر از آن
5) حجم منشور قائمی که قاعده آن ذوزنقه خاصی است آشنا بوده اند آنها محیط دایره را به صورت سه برابر قطر و مساحت را یک دوازدهم در مجذور محیط بدست می آورده اند که با فرض ns3 درست است.
6) آنها حجم استوانه مستدیر قائم را پیدا کردن حاصلضرب قاعده در ارتفاع بدست می آورند.
7) اما حجم مخروط ناقص یا هر ناقص مربع القاعده را به غلط به صورت حاصلضرب ارتفاع در سقف مجموعه قاعده ها محاسبه می کردند. و اینکه می دانند که اضلاع متناظر در دو مثلث قائم الزاویه متشابه متناسبند و اینکه عمود مثلث متساوی الساقین قاعده را نصف می کند و همچنین محاط در یک نیم دایره قائمه است. قضیه فیثاغورث را هم بلد بودند و به جای در مسائل فرض می کردند.
مسائل متعددی راجع به خط قاطع موازی با یک ضلع مثلث قائم الزاویه وجود دارد که منجر به حل معادلات درجه دوم می شوند.
و نیز بعضی از مسائل منتهی به دستگاه معادلات می شود در یک لوح یک مورد دستگاه ده معادله ده مجهول به چشم می خورد. در یک لوح دیگر که مربوط به سال 1600 ق.م است و در دانشگاه بیل نگهداری می شود که معادله درجه سوم کلی در بحث هرمهای ناقص وجود دارد که نتیجه حذف Z از دستگاه معادلات از نوع زیر است.
تقسیم بر محیط دایره به 360 جز مساوی را بدون تولید به بابلیهای عهد باستان مدیونیم X در دوره های آغازین سومری واحد بزرگی برای اندازه گیری فاصله که توی میل بابلی وجود داشت که تقریباً معادل 7 مایل امروزی است.
و چون میل بابلی برای اندازه گیری فاصله های طولانی بود به صورت واحد زمان یعنی زمانی برای پیمودن یک میل بابلی لازم است در می آمده که بعدها برای اندازه گیری فواصل زمان مورد پذیرش قرار گرفت.
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 31 کیلو بایت |
تعداد صفحات فایل | 21 |
شبکه های احتمالی، روش مسیر بحرانی و نمودار گانت
نمودار گانت
قبل ار تلاش جهت استفاده از این ابزار (Pert، CPM و Gantt) اطاعات پروژه باید از طریق معینی جمع آوری شده باشند. لذا لازم است یک توضیح پایه ای و اساسی در مورد قدم های ارتباطی ابتدایی کار داده شود.
فرایند طراحی یک پروژه شامل مراحل زیر است:
1-مشخص کردن تاریخ روش و شیوه های اجرای پروژه و طول عمر استفاده از پروژه.
2-مشخص کردن حوزه و میزان وسعت پروژه در دوره و مرحلة انتخاب شدة روش اجرای پروژه و طول عمر پروژه
3-مشخص کردن با انتخاب روش هایی که جهت مرور پروژه مورد استفاده قرار می گیرند.
4-مشخص کردن و از پیش تعیین کردن نقاط عطف یا تاریخ های بحرانی پروژه که باید به آنها پرداخت و رسیدگی کرد.
5-لیست کردن فعالیتها، با دورة پروژه، در رابطه با اینکه هرکدام از آنها باید سر موقع به پایان رسند.
6-برآورده کردن تعداد پرسنل لازم برای به پایان رساندن هر فعالیت
7-برآورد کردن پرسنل آماده به کار جهت به پایان رسانیدن هر فعالیت
8-مشخص کردن سطح مهارت مورد نیاز جهت تشکیل دادن هر فعالیت.
9-مشخص کردن وابستگی ها و پیش نیازی های هر پروژه.
-کدام فعالیت ها می توانند بطور موازی و هم زمان انجام شوند؟
-شروع کدام فعالیتها مستلزم تکمیل فعالیتهای دیگر است:
10-نقاط کنترلی و نقاط بازدید و مورد مرور پروژه
11-تشکیل دادن برآورد هزینة اجرای پروژه و تحلیل هزینه – منافع.
توسعة طرح یک پروژه مستلزم داشتن دقت بالا و درک جزئیات همة فعالیتهایی است که شامل می شودو مقدار زمانی که برای مدت زمان طول انجام هر فعالیت تخمین زده است، وابستگی های میان این فعالیتها، و توالی زمانی که این فعالیتها باید به اجرا درایند به علاوه، آماده بودن منابع باید مشخص گردد تا هر فعالیت با مجموعه فعالیتها جهت اختصاص به کار گرفته شود.
یک روش مورد استفاده برای توسعه لیست فعالیتها، خلق کردن چیزی است که به تجزیة ساختار کار معروف است.
یک تعریف:
تفکیک ساختار (WBS): یک انحلال و متلاشی کردن سلسله مراتب و یا تجزیة یک پروژه یا فعالیت اصلی به مراحل متوالی است که در آن هر مرحله یک تجزیه کاملتر از قبلی است. در شکل نهایی یک WSB در ساختار و چیدمان بسیار شبیه طرح اصلی است. هر مورد در یک مرحلة خاص از WBS متوالیاً شماره گذاری شده است (برای مثال: 10 و 10 و 30 و 40 و 50) هر مورد در مرحلة بعدی در طی شمارة منشاء اصلی خود شماره گذاری شده است. (برای مثال 1/10 و 2/10 و 3/10 و 4/10) WBS ممکن است در شکل یک دیاگرام کشیده شود. (چنانچه ابزارهای خودکار آماده باشند.) یا در یک نمودار شبیه کشیدن یک طرح.
WBS با دو فعالیت رو یهم رفته شروع می شود که نمایندة کلیت کارهایی هستند که پروژه را تشکیل می دهند. این نام طرح پروژه WBS می شود. استفاده از روش کار یا طول عمر مسیستم (تحلیل، طراحی و اسباب تکمیل) بعنوان یک راهنما قدم می گذارد پروژه به قدم های اصلی اش تقسیم شده است. اولین مرحلة پروژه وارد کردن اطلاعات است. مرحلة دوم اصلی تحلیلی است که پیرو طراحی، ترسیم، تست کردن، تکمیل و پیگیری دقیق انجام وظایف است. هرکدام از این مراحل باید به مرحلة بعدی جزئیاتش شکسته شوند و هرکدام از آنها، بازهم به مراحل کاملتر جزئیات، تا به یک فعالیت قابل مدیریت برسد. اولین WBS برای طول عمر پروژه به این صورت خواهد بود.
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 10 کیلو بایت |
تعداد صفحات فایل | 12 |
راهبردهای حل مسأله در ریاضی
مقدمه
مسأله را می توان به زبان ساده تعریف کرد. هر گاه فردی بخواهد کاری انجام دهد ولی نتواند به هدف خود برسد، برایش مسأله ایجاد می شود. به عبارت دیگر هر موقعیت مبهم یک مسأله است. حل مسأله نوعی از یادگیری بسیار پیچیده است. مسأله و تلاش برای حل آن جزئی از زندگی هر فرد است. فرایند برخورد با شرایط زندگی همان مسأله است.
دو دیدگاه متفاوت در آموزش ریاضیات نسبت به حل مسأله وجود دارد:
1. ریاضی یاد بدهیم تا دانش آموزان بتوانند مسأله حل کنند.
2. ریاضی را با حل مسأله آموزش دهیم.
در دیدگاه اول آموزش ریاضی مطابق با محتوای موضوعی است و مفاهیم متفاوتی تدریس می شوند. انتظار داریم دانش آموزان با استفاده از دانش ریاضی خود مسائل متفاوت را حل کنند. اما در دیدگاه دوم آموزش ریاضیات از طریق حل مسأله اتفاق می افتد. یعنی دانش آموز مسأله حل می کند و در ضمن آن محتوا و مفاهیم جدید ریاضی را می سازد، کشف می کند و یا یاد می گیرد . در حال حاضر ، دیدگاه دوم در آموزش ریاضیات بیش تر مطرح است. در این نگاه حل مسأله نقطه ی تمرکز یا قلب تپنده ی آموزش ریاضیات است.
مهارت حل مسأله
اگر از معلمان ریاضی سؤال شود که مشکل اصلی دانش آموزان در درس ریاضی چیست؟ به یقین خواهند گفت: آنها در حل مسأله ناتوان هستند.
درمطالعه ی تیمز نیز همین موضوع را شاهد بودیم. چون در اغلب مسأله های آزمون کتبی این مطالعه عملکرد دانش آموزان پایین است. در واقع می توانیم بگوییم دانش آموزان توانایی یا مهارت حل مسأله را ندارند.
یکی از دلایل این ناتوانی ، فقدان طراحی برای آموزش مهارت حل مسأله به دانش آموزان بوده است. یا به عبارتی معلمان به آنها یاد نداده اند که چگونه مسأله را حل کنند. هر گاه دانش آموزان با مسأله ای روبروه شده و از حل آن عاجز مانده اند معلمان تنها به بیان راه حل یا پاسخ مسأله اکتفا کرده اند و نگاه های پرسش گر، کنجکاو ومتحیر دانش آموزان با این سؤال باقی مانده است: معلم ما چگونه توانست مسأله را حل کند؟ راه حل مسأله چگونه به فکر او رسید؟ چرا ما نتوانستیم راه حل مسأله را کشف کنیم؟
در خیلی از مواقع معلمانی که سعی کرده اند به طریقی حل مسأله را به دانش آموزان خود یاد دهند، راه را اشتباه رفته اند و آموزش های نادرست داده اند. برای مثال به دانش آموزان گفته اند: عددهای مسأله بسیار مهم اند. زیر آن ها خط بکشید. فراموش نکنید که باید از آن ها استفاده کنید. همین آموزش نادرست باعث شده است. دانش آموزان اطلاعات مسأله را به خوبی تشخیص ندهند. وقتی مسأله زیربرای دانش آموزان کلاس سوم مطرح شد، آن عدد 747 را در عملیات مسأله دخالت دادند و با آن عدد عبارت های جمع و تفریق و ... نوشتند:
« یک هواپیمای بوئینگ 747 با 237 مسافر در فرودگاه نشست و 130 مسافر را پیاده کرد. حالا این هواپیما چند مسافر دارد؟
یا برای دانش آموزان گفته اند که درمسأله بعضی از کلمه ها بسیار مهم است. برای مثال اگر کلمه روی هم را دیدید مسئله مربوط به جمع است و اگر کلمه ی اختلاف را دیدید حتماً باید تفریق کنید.
به همین دلیل در مسأله زیر که در مطالعه ی تیمز (2003) آمده بود، عده ای از از دانش آموزان کلاس چهارم شرکت کننده. در این مطالعه به اشتباه افتادند و مسأله را به جای ضرب، جمع کردند.
«در یک سالن سینما 15 ردیف صندلی وجود دارد. در هر ردیف 19 صندلی قرار دارد . این سالن روی هم چند صندلی دارد؟ »
بهتر است این روش های آموزش نادرست را به کار نبریم و به دنبال طرحی برای آموزش حل مسأله به دانش آموزان باشیم.
آموزش حل مسأله
آیا حل مسأله آموزش دادنی است؟ یکی از دلایل فقدان طرحی برای آموزش حل مسأله به دانش آموزان ، این است که آموزشگران ریاضی تا چندین سال پیش معتقد بودند که حل مسأله آموزش دادنی نیست بلکه یک هنر یا ویژگی و توانایی است که بعضی از انسانها دارند و بعضی ندارند. بنابراین هیچ کس تلاش برای حل مسأله به دانش آموزان نمی کرد. اما تعداد کسانی که درمورد آموزش حل مسأله تحقیق می کنند بیش تر است.
یکی از افرادی که در مورد چگونگی حل مسأله و آموزش آن تحقیق کرد جرج پولیا است. حاصل کار او در کتاب «چگونه مسأله حل کنیم» منتشر شد. مرحوم احمد آرام این کتاب را ترجمه کرده است. او در مقدمه ی کتاب خود می گوید: « من یک ریاضیدان هستم. متخصص آموزش ریاضی نیستم، اما علاقمندم بدانم چرا من می توانم مسأله ریاضی را حل کنم و دیگران نمی توانند؟ چرا بعضی از دانشجویان مسأله ریاضی را حل می کنند ولی بعضی نمی توانند؟ او همین سؤال ها را دنبال کرد و مدلی برای تفکر حل مسأله و آموزش راهبردها ارائه کرد. پولیا دو حرف اساسی دارد. 1- مدل چهار مرحله ای برای تفکر حل مسأله 2- آموزش راهبردها که البته نکته دوم در آموزش اهمیت بیشتری دارد.
مدل چهار مرحل ای پولیا
فرایند تفکر حل مسأله برای افراد مختلف متفاوت است. پولیا تلاش کرده تفکر حل مسأله را به نوعی مدل سازی کند. او الگویی چهار مرحله ای را مطرح کرده است. در فرایند حل مسأله این چهار مرحله چهار گام طی می شوند تا یک مسأله ریاضی به طور کامل حل شود. مدل چهار مرحله ای او به این مشکل است:
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 33 کیلو بایت |
تعداد صفحات فایل | 52 |
آموزش ریاضی با روش و فنون جدید ویژة پیش دبستان ، دبستانی ، دورة راهنمایی تحصیلی
فصل اول
کلیاتی درباره آموزش ریاضی
اهمیت ریاضی در زندگی بشری
پیشرفت دانش و تمدن بشری مرهون علم ریاضی است به طوریکه ریاضی پایه واساس کلیه علوم اعم از علوم انسانی (روان شناسی ، جامعه شناسی ، فلسفه ، تاریخ ، جغرافیا ، ادبیات ، شعر و موسیقی ، هنر و…..) و علوم تجربی (زیست شناسی ، زمین شناسی ، فیزیک ، شیمی ، پزشکی، نجوم ، فنون ، مکانیک ، عمران ، ساختمان ….. )و ریاضی جزئی از اجزاء لاینفک زندگی معمولی در معا ملات ، تغذیه و فنون و کارهای معمولی که بشر در روزمره با آن سر و کار دارد ، به حساب می آید .
در علوم اجتماعی به ویژه جامعه شناسی ،ارزش و قطعیت معتبر است چنانکه از آمار بعنوان یکی از وسایل مهم تحقیق استفاده می گردد و محققین در اغلب موارد مانند تحقیق در موضوع خود کشی ها ، کثرت ازدواج ها ، شیوع وافزایش طلاقها و بالا رفتن و یا پائین آمدن نرخ ها و موارد زیادی مانند آنها با استفاده از اطلاعات آماری تحقیقات خود را ارزش علمی می بخشد .
اهمیت و لزوم هندسه در معماری ، حساب در بانکداری و صدها موارد کاربرد ریاضیات در زندگانی عملی می توان سخن به میان آورد .
در مورد ارزش و قطعیت و اعتبار ریاضیات در علوم نیز کافی است تکرار نمائیم که دانشمندان اغلب کشفیات و معلومات حاصله را هنگامی روشن و قطعی می شمارند که می توان آنها را به صورت اعداد یا فرمولهای ریاضی نشان داد و به عبارت دیگر کیفیت را به صورت کمیت عرضه داشت و در این راه به اندازه ای پیش رفته اند که گفته اند:
(شناخت عبارتست از اندازه گیری ) اگر امروز قسمت عمده وسایل و لوازم کار گاهها و آزمایشگا هها را وسایل اندازه گیری تشکیل می دهند علتش همین قطعیت علوم ریاضی است که موضوع آن کمییت و مقدار است.
زمان را نیز با استفاده از جنبش حرکت متحدالشکل که در مکان صورت می گیرد اندازه می گیرند ـ چنانچه ساعت و دقیقه و ثانیه را از جنبش حرکت متحدالشکل عقربه ای در روی صفحه ساعت اندازه می گیرند در حقیقت در اینگونه موارد ، مکانی که چند متحرک یکنواخت طی می نمایند اندازه گرفته میشود.
چنانکه می دانیم مکانیک نیز در بدو پیدایش خود صورت دانش تجربی داشته است و بعد استنتاجی و عقلانی گردیده است چنانکه گالیله بنیانگذار مکانیک خود قانون سقوط اجسام را به وسیله تجربه و آزمایش معلوم داشته و اثبات کرده است .
ستاره شناسی نیز که مطالعات اجسام آسمانی و حرکات آنها است امروزه کاملا جنبه ریاضی دارد ، بعبات دیگر ، ستاره شناسی که قسمت عملی مکانیک ومورد اعمال قوانین مکانیکی است در بدو پیدایش خود دانشی بود که روش آن منحصرا مشاهده بوده است . زیرا کرات آسمانی را نمی توان تحت آزمایش در آورد ، ولی بعدا به صورت استنتاجی و عقلانی در آمده و در قالب ریاضیات ریخته شده و بدین ترتیب جنبه تجربی و ریاضی پیدا کرده است .چنانکه قانون جاذبه نیوتون (Newton) (1727-1642 ریاضیدان و فیریسین و ستاره شناس ) کاشف قانون مزبور به وسیله آن حرکت ستارگان را تعیین کرده است قانونی است تجربی که به صورت فرمول ریاضی بیان شده است1 .
وقتی در آثار باستانی و تاریخی نظیر تخت جمشید و مسجد شیخ لطف اله اصفهان و چهل ستون و دیگر آثار باستانی نظری بیفکنیم در آن آثار با عظمت علم ریاضی کاملا مشهود است .
علما و دانشمندانی نظیر (محمد بن طوسی الخوارزمی ) که در آثار وی سنت های ریاضی یونانی و هندی با هم ترکیب شده است و در قرن نهم میلادی سوم هجری چندین اثر از خود برجای گذاشته است که کتاب «المختصر حساب الجبر و المقا بله از خود به جای گذاشته » این کتاب به نام (Liber Algorism) لیبرالگوریسمی یعنی کتاب الخوارزمی به لاتین ترجمه شده که کلمه انگلیسی ( Algorism ) به معنی حساب و محاسبه و روش محاسبه را از آن گرفته اند . ( ص 147 علم و تمدن در اسلام . نوشته سید حسن نصر ) گذشته تاریخ ایران مشحون از این است که علما و دانشمندان به علم ریاضی اهمیت فراوانی قائل بوده اند .
علمائی همچون ابن سینا ، خیام ، ابوالوفای بوزجانی شارح کتاب جبر خوارزمی – ابن هثیم – اخوان الصفا – ابوسهل کوهی که یکی از علمای جبر اسلامی است . فارابی که نظریة موسیقی ایران زمان خود را تکمیل کرده است و همین موسیقی سنتی زنده حاضر باقی مانده است 1.
ابوریحان بیرونی چند تألیف ریاضی و نجومی بسیار مهم از دوره قرون وسطائی اسلام بر جای گذاشته و در مسائلی همچون رشته های عددی و تعیین شعاع زمین کار کرده است .
معاصر وی ( بوبکر الکرخی ) از خود دو اثر اساسی در ریاضیات اسلامی باقی گذاشته است :
‹ یکی الفخری در جبر و دیگری الکافی فی الحساب 2›
قرن پنجم / یازدهم : که در آن سلجوقیان به قدرت رسیدند چندین ریاضیدان بزرگ در این دوره وجود داشته اند ، بزرگترین ایشان عمر خیام بود و گروهی از منجمان و ریاضیدانان دیگر در گاه شماری ایران تجدید نظر و آن را اصلاح می کردند و برجسته ترین آنان خواجه نصیرالدین طوسی است که به شیوائی و راهنمائی او و چند تن دانشمند و بالخاصه ریاضیدانان رصدخانه مراغه گرد یکدیگر جمع آمده و به کار رصد و دیگر کارهای علمی مشغول شده بودند .
و دیگری ابن بناء مراکشی در قرن هشتم / چهاردهم
روشهای تازه ای از علم اعداد برداشت که یک قرن بعد غیاث الدین جمشید در محاسبه و نظریه اعداد بزرگترین ریاضیدانان اسلامی است . کاشف حقیقی کسر اعشاری او بوده و اندازه بسیار صحیحی از ( عدد پی ) را بدست آورده است . او نیز روشها و تدبیر های تازه ای برای عمل حساب و محاسبه اکتشاف کرده است .
کتاب مفتاح الحساب وی اساسی ترین تألیف از نوع خود در زبان عربی است .
در دوره صفویه در ایران معماران و مهندسان مدارس و مساجد و پل های آن زمان همه از ریاضیدانان قابلی بودند :
معروف ترین چهره ریاضی ( بها الدین عاملی ) است .
تألیف ریاضی وی تلخیص و تحریری از آثار استادان سلف است یکی از معاصران بها الدین عاملی ، ملامحمد باقر یزدی که در آغاز قرن دهم/ شانزدهم شکوفا شد مطالعات و تحقیقات اصیل و ابتکاری در ریاضیات داشته است .
از افتخارات ما ایرانیان و مسلمانان این بوده است که همیشه در علوم به ویژه علم ریاضی پیشرو و پیش قدم بوده ایم و امروزه هم جهان متمدن پیشرف خود را مرهون علم ریاضی می داند. پیشرفتهائی که در امور مختلف صنعت و فنون ، ماهواره ای ، رایانه ای موشک های دور برد ، ساختمانهای آسمان خراش ، علوم تکنولوژی و صنعت هواپیما سازی ، ماشین سازی ، جاده سازی ، کشاورزی های مدرن و پیشرفته . صنایع شیمیائی و دارو سازی و علم پزشکی و جراحی به طور کلی کلیه صنایع به خاطر این است که دنیای متمدن به علم ریاضی اهمیت فوق العاده ای قائل است و تا به حدی که امروزه ریاضیات که پایه و اساس به حساب می آید و در کلیه مقاطع تحصیلی از پیش دبستانی ، دبستان ، راهنمائی و دبیرستان و دانشگاه ریاضیات اهمیت خود را دارا می باشد.
از روشهای گوناگون و فعال و پیشرفته در خلال بازی و امکانات کمک آموزشی و تکنولوژی آموزشی و ایجاد انگیزه و علاقه در آنان موجبات ایجاد و مفاهیم اولیه ریاضی را فراهم می سازند و بالنتیجه پیشرفت و شکوفائی این علم مهم در کودکان و دانش آموزان و دانشجو یان را فراهم آورده و باعث ایجاد رشد و صنعت تکنولوژی می گردد .
امید است با توجه بیشتر به این علم و استفاده از روش های فعال ، امروزه هم بیش از پیش به آموزش ریاضی در مقاطع مختلف قدم برداشته و موجباتی فراهم آید تا مغز های متفکر ریاضیدان و صاحب خرد روز به روز بر شمار آن در این مرزو بوم افزوده گردد .
از آنجا که علم ریاضی در پیشرفت سایر علوم نقش عمده ای داشته یکی از عوامل توسعه فن آوری در دهه های اخیر بوده است توجه بیشتر به آموزش همگانی در دنیای امروز ضروری به نظر می رسد .
اتحادیه بین المللی ریاضیدانان در سال 1992 با توجه به این ضرورت به منظور جلب توجه جهانیان به اهمیت جایگاه علوم ریاضی سال 2000 را به عنوان سال جهانی ریاضیات پیشنهاد کرد این پیشنهاد مورد موافقت سازمان علمی ، آموزشی و فرهنگی ملل متحد ( یونسکو ) قرار گرفت و با استقبال بیشتر کشور های جهان برای تصمیم و گسترش ریاضیات در میان شهروندان خویش ، شیوه های آموزش این علم را بهبود بخشید و به توسعه آن هر چه بیشتر اهتمام ورزند .
برای دستیابی به این هدف ارزشمند عبارت های « ریاضیات برای همه » « ریاضیات در راه توسعه » به مثابه شعارهای اصلی سال جهانی ریاضیات اعلام شده است .
بیشتر کشورهای جهان از جمله ایران بر تحقق بخشیدن این شعارها در سال 2000 میلادی برنامه هائی را تنظیم و اجرا می کنند . ( نقل از پشت جلد ریاضی سال سوم راهنمائی تحصیلی – 1379 )
روشهای تدریس را به 3 دسته تقسیم می شوند.
- روش زبانی و شفاهی
- روش مکاشفه ای
- روش فعال ( تجربه و عمل )
الف – روشهای شفاهی و زبانی
معمولا معلم متکلم وحده است با توجه به کلیه قوانین یا نتایج معمولا توسط معلمان قواعد و قوانین و چگونگی اجرای برنامه های ریاضی را بیان نموده و شاگردان هم به طور ماشینی آن قواعد را فرا گرفته و در حل مسائل که معمولا هیچ گونه کاربردی در زندگی معمولی آنها ندارد به کار می برند و بیشتر معلمان متوسل به ترس و تنبیه و فشار شده و با اجرای قبیل ترفند ها کودکان را وادار به از حفظ کردن و بازگوئی می نمایند .
« صفت بارز این روشها آن است که در گفتار معلم و نوشته کتاب و به طور کلی به علم قراردادی 1 اهمیت داده می شود .
تدریس با تعریف چند آغاز می شود ، سپس حقایق و روابط ریاضی از تعاریف مذکور با روش منطقی استنتاج و به کمک الفاظ و عبارات منتقل میشود 2.
در روش زبانی و شفاهی کافی است کودکان از عهده خواندن و نوشتن اعداد چهار عمل اصلی برآیند و بدون آنکه با مفاهیم آن آشنا شوند و اجرای سریع حساب برای آنها مهم است .
چون آمها معتقدند که (اولا درک عمیق مفاهیم و روابط ریاضی از عهده کودکانی که تازه به دبستان آمده وحداکثر هفت سال دارند خارج است .
« ثانیا بسیاری از اطفال امروزه حساب را در زندگی فقط برای حوایج روزانه به کار خواهند برد و هیچ وقت نیازی به درک عمیق روابط نخواهند داشت» .
در این روش که معلم قواعد را دیکته می کند برای هر یک چند مثالی می آورد. سپس به کمک تمرینهای متعدد می کو شد و برای اجرای اعمال هر یک مثالی می آورد سپس به کمک تمرینهای متعدد اجرای اعمال را به صورت انعکاس مشروط در آورده انجام صحیح و سریع آنها را در این راه میسر سازد.
تمرینهای پی در پی روزانه ، هفتگی و ماهانه حقایق وقضایا را در حافظه نقش خواهد بست باید به کمک هزاران هزار تمرین طرز اجرای اعمال را باید در مراکز حرکت ثبت کرد .
- عبارت« الدرس حرف و التکرار الف » مؤید همین معنی است .معایب این روش ها کاملا مشهود است اولا : هیچ گونه انگیزه و رغبتی در یاد گیرندگان ایجاد ننموده وثانیا : مفاهیم غلط و غیر واقعی در ذهن دانش آموزان ایجاد نموده وآنها را نسبت به این درس بیزار کرده و آنها را از این علم می تر ساند.
نگارنده که چندین سال است در روش تدریس ریاضیات در دوره های مختلف مشغول است . معمولا در شروع ترم جدید تحصیلی چند سئوال طبق نمونه های زیر برای دانشجویانی که این واحد را انتخاب نموده وبنا است آن را بگذرانند مطرح می نماید :
1- یک سانتی متر مکعب را به آنها نشان داده پرسیده می شود که به این چه می گویند ؟ و چند تای آن یک دسی متر مکعب می شود؟
لیتر چیست؟ = متر مکعب را بطور صحیح نشان دهند .
2- مفهوم اعمال کسری را با یک مثال نشان دهید .
3- مفهوم اعمال کسر اعشاری زیر را نشان دهید .
4- موزائیکه شما روی آن هستید اگر هر بعدش 25 سانتی متر باشد چند تای آن یک متر مربع می شود ؟
5- می دانید که یک شبانه روز 24 ساعت است هر ساعت را چگونه محاسبه کرده اند ؟
6- فرق بین سال قمری وسال شمسی چیست و چرا در سال 1380 سال شمسی معادل سال 1423 سال قمری است ؟
و نظایر این سؤالها، با توجه به اینکه تعداد هر کلاس 40 نفر است . از سوال اول 99% از سوال دوم 100% از سوال سوم 100% از سوال چهارم 65% از سوال پنجم 50% از سوال ششم 60% نتوانسته اند جواب صحیح را ارئه نمایند.
از معایب دیگر روشهای شفاهی وزبانی این است که به تدریج قدرت هوش کودک ضعیف می کند به عقیده کلا پارد1 طبیب و روانشناس سویسی «باهوش کسی است که بتواند بسهولت و سرعت عقیده خود را بروضعی که برایش بی سابقه است منطبق سازد » ( ص 8 همان کتاب )
از معایب دیگر این روش این است که معلو ماتی که به این طریق کسب می شود با یکدیگر ارتباط نداشته زود فراموش می شود چون دانش آموز در ایجاد یا جمع اوری آنها سهمی نداشته است و بخصوص که بیشتر مفاهیم ریاضی ظاهرا برای دانش آموزان هیچ گونه کاربردی در زندگی آنها نداشته و ندارد و این باعث می شود که دانش آموزان فکر کنند که یادگیری ریاضی برای آنها امری تحمیلی و فقط برای امتحان دادن و نمره گرفتن می خوانند چون با مفاهیم آشنا نیستند و مفهوم غلط در ذهن آنها ایجاد شده است که یادگیری آن را امری عبث و بیهوده می انگارند و نسبت به ان بیزار شده و برای همیشه از آن میترسند حتی برخی از دانشجویانی که دیپلمه ریاضی بوده اند و به تحصیل در دوره ریاضی مشغولند به سوالهایی که به مفاهیم ریاضی مربوط مطرح می شود از پاسخ دان صحیح ناتوانند و این امر می رساند که آموزش ریاضی آن هم به این طریق ( شفاهی – زبانی ) کاری است عبث و بیهوده و موجب اتلاف وقت وباعث دلزدگی وبیزاری دانش آموزان نسبت به درس ریاضی می شود و تا جایی که اکثر قریب به اتفاق دانش آموزان دوره راهنمایی و متوسطه در درس ریاضی ضعیف و از ریاضی بیزارند واین نتیجه اجرای روش ناصحیح زبانی وشفاهی در دوره پیش دبستانی و دبستانی و راهنمائی است . اگر چه امروزه کم و بیش نسبت به عیوب روش شفاهی و زبانی پی برده اند و مرتبا به معلمان توصیه می شود که از این روش صرفنظر نمایند لیکن به دلائل متعدد من جمله تعداد زیاد شاگردان – نبودن امکانات آموزشی عدم آگاهی معلمان نسبت به تدریس با روش فعال – حجم زیاد کتاب و مجبور بودن معلم به تمام کردن برنامه درسی امکان کاربرد روش فعال به اندازه کافی مقدور نیست .
از معایب دیگر روش زبانی و شفاهی افت تحصیلی است که معمولا دانش آموزان گرفتار آن می شوند که اجرای روشهای کهنه و پوسیده زبانی و شفاهی موجب افت تحصیلی است که معمولا دانش آموزان گرفتار آن می شوند که بدون شک اجرای روشهای کهنه و پوسیده زبانی و شفاهی در ایجاد تکرار پایه تأثیر داشته است .
تکرار پایه تحصیلی در اثر عدم توفیق در امتحانات پیش می آید .
کودک یا نوجوانی که در نتیجه عدم احراز شرایط ارتقاء ناچار برنامه ای را تکرار می کنند از هر دو جنبه شخصی و مادی دوره گذشته خود را از دست داده و از نظر اجتمائی قسمتی از امکانات تربیتی جامعه را بیهوده تلف کرده است .( 286 مسائل آموزش و پرورش تألیف محمد طاهر معیری 1376 ) .
بررسی آثار ثبت نامهای اخیر مدارس کشور نشان می دهد که در قبال هر 1000 ثبت نام پایه اول در دبستانها پس از پنج سال 797 در دوره راهنمائی پس از سه سال 771 نفر و پس از چهار سال 624 نفر اخرین پایه تحصیلات در دوره مربوطه به تحصیل اشتغال داشته اند .
با در نظر گرفتن نسبت تقریبی در امتحانات پایانی در دوره های مزبور می توان دید که در قبال هر 1000 ثبت نام پایه اول تحصیلات هر یک از سه سطح مزبور پس از گذشتن زمان معمولی یک دو.ره کامل از مدارس ابتدائی ، راهنمائی متوسطه به ترتیب 557 و 648 و 500 درصد افت حاصل می شود .1
در مورد افت تحصیلی عوامل گوناگونی است که آن را به شش دسته تقسیم کردهاند :
1- نظام ارزشی 2- نظام آموزشی 3- مدیریت 4- معلم 5- نحوه تدریس و ارزشیابی 6- کتاب های درسی ، کتابخانه و وسائل کمک آموزشی که در این جهت نحوه تدریس و ارزشیابی می پردازیم :
نتیجه یادگیری طوطی وار عبارت از عدم فراهم شدن موجباتی جهت به کار انداختن قوا و استعداد های متعلمین و در نتیجه آماده خور بار آمدن و تنبل شدن آنها که باعث می شود در بزرگسالی تسلیم و مطیع باشند
این روش موجب ضعف روح تحقیق و روحیه استفاده پذیری و قبول دانشجو و دانش آموز بدون کوچکترین اعتراض و تحمل سختی و خشونت از طرف بزرگتر ها توجه به حفظ تکرار کلمات به جای علائق به فهم حقایق مندرج در آنها و اولویت یافتن علوم منقول بر معقول زیرا تعقل ممکن است سلطه معلم و مافوق را به خطر اندازد و البته حاصل این همه رکود ذهنی و عجز فکری است1 .
دکتر محمد حسین نوری – در روزنامه اطلاعات ( یکشنبه 22 اسفند 6700 شماره 18710 صفحه 12 تحت عنوان « در دانشگاه باید سطح درس را از دوره ابتدائی شروع کند» مرقوم فرموده اند : در طول تدریس ( 67 – 62 ) در گروه جغرافیائی دانشگاه مشهد متوجه شدند که سطح علمی دانشجویان به ویژه در رابطه یا علم ریاضی در حد بسیار پائین است .برای درک بهتر علمی دانشجویان لازم دانستند از آنها امتحان به عمل آید .
ده سئوال در حد سوم راهنمائی تهیه شده و در اوائل جلسه مهرماه 67 بین دو گروه متفاوت امتحان به عمل آید سئوالات برای هر دوگروه یکسان بود .تعداد کل دانشجویان شرکت کننده 170 نفر پسر و دختر بود . دو نفر از این عده تنها کسانی بودند که نمره بیش از 14 و 15 گرفته اند یکی از آنها در سال 54 و دیگری در سال 59 دیپلم گرفته بود و تعداد 168 نفر بقیه که همه نمره کمتر از 10 داشتند دیپلمه های بعد از 1360بودند که نمرات اکتسابی آنان در امتحان مذکور فاجعه آمیز است از 168 نفر دیپلمه ای که به دانشگاه راه یافته اند فقط 12 نفر می توانند محیط و مساحت دایره به شعاع 3 سانتی متررا حساب کنند .